Press "Enter" to skip to content

Molecular Mechanisms of Psilocybin and Implications for the Treatment of Depression

Therapeutic deficiencies with monoaminergic antidepressants invites the need to identify and develop novel rapid-acting antidepressants. Hitherto, ketamine and esketamine are identified as safe, well-tolerated rapid-acting antidepressants in adults with treatment-resistant depression, and also mitigate measures of suicidality. Psilocybin is a naturally occurring psychoactive alkaloid and non-selective agonist at many serotonin receptors, especially at serotonin 5-HT2A receptors, and is found in the Psilocybe genus of mushrooms. Preliminary studies with psilocybin have shown therapeutic promise across diverse populations including major depressive disorder. The pharmacodynamic mechanisms mediating the antidepressant and psychedelic effects of psilocybin are currently unknown but are thought to involve the modulation of the serotonergic system, primarily through agonism at the 5-HT2A receptors and downstream changes in gene expression. It is also established that indirect effects on dopaminergic and glutamatergic systems are contributory, as well as effects at other lower affinity targets. Along with the direct effects on neurochemical systems, psilocybin alters neural circuitry and key brain regions previously implicated in depression, including the default mode network and amygdala. The aim of this review is to synthesize the current understanding of the receptor pharmacology and neuronal mechanisms underlying the psychedelic and putative antidepressant properties of psilocybin.

Ling, S., Ceban, F., Lui, L. M. W., Lee, Y., Teopiz, K. M., Rodrigues, N. B., . . . McIntyre, R. S. (2021). Molecular Mechanisms of Psilocybin and Implications for the Treatment of Depression. CNS Drugs. doi:10.1007/s40263-021-00877-y